Which type of natural selection favors two or more extreme phenotypes over any intermediate?

Which type of natural selection favors two or more extreme phenotypes over any intermediate?

Which type of natural selection favors two or more extreme phenotypes over any intermediate?

  • Entertainment & Pop Culture
  • Geography & Travel
  • Health & Medicine
  • Lifestyles & Social Issues
  • Literature
  • Philosophy & Religion
  • Politics, Law & Government
  • Science
  • Sports & Recreation
  • Technology
  • Visual Arts
  • World History
  • On This Day in History
  • Quizzes
  • Podcasts
  • Dictionary
  • Biographies
  • Summaries
  • Top Questions
  • Week In Review
  • Infographics
  • Demystified
  • Lists
  • #WTFact
  • Companions
  • Image Galleries
  • Spotlight
  • The Forum
  • One Good Fact
  • Entertainment & Pop Culture
  • Geography & Travel
  • Health & Medicine
  • Lifestyles & Social Issues
  • Literature
  • Philosophy & Religion
  • Politics, Law & Government
  • Science
  • Sports & Recreation
  • Technology
  • Visual Arts
  • World History
  • Britannica Classics
    Check out these retro videos from Encyclopedia Britannica’s archives.
  • Demystified Videos
    In Demystified, Britannica has all the answers to your burning questions.
  • #WTFact Videos
    In #WTFact Britannica shares some of the most bizarre facts we can find.
  • This Time in History
    In these videos, find out what happened this month (or any month!) in history.
  • Britannica Explains
    In these videos, Britannica explains a variety of topics and answers frequently asked questions.
  • Student Portal
    Britannica is the ultimate student resource for key school subjects like history, government, literature, and more.
  • COVID-19 Portal
    While this global health crisis continues to evolve, it can be useful to look to past pandemics to better understand how to respond today.
  • 100 Women
    Britannica celebrates the centennial of the Nineteenth Amendment, highlighting suffragists and history-making politicians.
  • Britannica Beyond
    We’ve created a new place where questions are at the center of learning. Go ahead. Ask. We won’t mind.
  • Saving Earth
    Britannica Presents Earth’s To-Do List for the 21st Century. Learn about the major environmental problems facing our planet and what can be done about them!
  • SpaceNext50
    Britannica presents SpaceNext50, From the race to the Moon to space stewardship, we explore a wide range of subjects that feed our curiosity about space!

Males and females of certain species are often quite different from one another in ways beyond the reproductive organs. Males are often larger, for example, and display many elaborate colors and adornments, like the peacock’s tail, while females tend to be smaller and duller in decoration. We call such differences sexual dimorphisms (Figure), which arise in many populations, particularly animal populations, where there is more variance in the male's reproductive success than that of the females. That is, some males—often the bigger, stronger, or more decorated males—obtain the vast majority of the total matings, while others receive none. This can occur because the males are better at fighting off other males, or because females will choose to mate with the bigger or more decorated males. In either case, this variation in reproductive success generates a strong selection pressure among males to obtain those matings, resulting in the evolution of bigger body size and elaborate ornaments to attract the females’ attention. Females, however, tend to achieve a handful of selected matings; therefore, they are more likely to select more desirable males.

Sexual dimorphism varies widely among species, and some species are even sex-role reversed. In such cases, females tend to have a greater variance in their reproductive success than males and are correspondingly selected for the bigger body size and elaborate traits usually characteristic of males.

Which type of natural selection favors two or more extreme phenotypes over any intermediate?
Sexual dimorphism in (a) peacocks and peahens, (b) Argiope appensa spiders (the female spider is the large one), and in (c) wood ducks. (credit “spiders”: modification of work by “Sanba38”/Wikimedia Commons; credit “duck”: modification of work by Kevin Cole)

We call the selection pressures on males and females to obtain matings sexual selection. It can result in developing secondary sexual characteristics that do not benefit the individual’s likelihood of survival but help to maximize its reproductive success. Sexual selection can be so strong that it selects traits that are actually detrimental to the individual’s survival. Think, once again, about the peacock’s tail. While it is beautiful and the male with the largest, most colorful tail is more likely to win the female, it is not the most practical appendage. In addition to greater visibility to predators, it makes the males slower in their attempted escapes. There is some evidence that this risk is why females like the big tails in the first place. The speculation is that large tails carry risk, and only the best males survive that risk: the bigger the tail, the more fit the male. We call this the handicap principle.

The good genes hypothesis states that males develop these impressive ornaments to show off their efficient metabolism or their ability to fight disease. Females then choose males with the most impressive traits because it signals their genetic superiority, which they will then pass on to their offspring. Although one may argue that females should not be picky because it will likely reduce their number of offspring, if better males father more fit offspring, it may be beneficial. Fewer, healthier offspring may increase the chances of survival more than many, weaker offspring.

In 1915, biologist Ronald Fisher proposed another model of sexual selection: the Fisherian runaway model, which suggests that selection of certain traits is a result of sexual preference.

In both the handicap principle and the good genes hypothesis, the trait is an honest signal of the males’ quality, thus giving females a way to find the fittest mates— males that will pass the best genes to their offspring.

Which type of natural selection favors the two extremes over the intermediate phenotype?

Diversifying (or disruptive) selection: Diversifying selection occurs when extreme values for a trait are favored over the intermediate values. This type of selection often drives speciation.

When two or more extreme phenotypes are favored over any intermediate phenotype which type of selection will occur?

Diversifying selection. Two or more divergent phenotypes in an environment may be favoured simultaneously by diversifying selection.

Which type of natural selection favors one extreme of phenotype over the extreme?

Directional selection occurs when one extreme of the phenotype is favored.

Which mode of natural selection favored the intermediate phenotype?

Stabilizing Selection Stabilizing selection occurs when the intermediate, or most common, phenotype is favored. This type of selection tends to narrow the variation in the phenotype over time.