When the genotype consists of a dominant and recessive allele, the phenotype will be like

. When the genotype consists of a dominant and a recessive allele, the phenotype will be like _________________ allele. * a. the dominantb. the recessivec. both a and bd. neither of a and b​

Answer:

a. the dominant

#CarryOnLearning

In one sense, the term “genotype”—like the term “genome”—refers to the entire set of genes in the cells of an organism. In a narrower sense, however, it can refer to different alleles, or variant forms of a gene, for particular traits, or characteristics. An organism’s genotype is in contrast with its phenotype, which is the individual’s observable characteristics, resulting from interactions between the genotype and the environment.

There is a complex connection between the genotype and the phenotype. Since the phenotype is the result of an interaction between genes and the environment, different environments can lead to different traits in individuals with a particular genotype.

In addition, different genotypes can lead to the same phenotype. This happens because genes have different alleles. For some genes and traits, certain alleles are dominant while others are recessive. A dominant trait is one that shows up in an individual, even if the individual has only one allele">allele that produces the trait.

Some aspects of eye color work this way. Brown eyes, for instance, are dominant over blue eyes. This is because a pigment called melanin produces the brown color, while having no pigment leads to blue eyes. Having just one allele for the dark pigment is enough to make your eyes brown. There actually are several different pigments that affect eye color, each pigment resulting from a particular gene. This is the reason why people can have green eyes, hazel eyes, or any of a range of eye colors apart from blue or brown.

When discussing genotype, biologists use uppercase letters to stand for dominant alleles and lowercase letters to stand for recessive alleles. With eye color, for instance, “B” stands for a brown allele and “b” stands for a blue allele. An organism with two dominant alleles for a trait is said to have a homozygous dominant genotype. Using the eye color example, this genotype is written BB. An organism with one dominant allele and one recessive allele is said to have a heterozygous genotype. In our example, this genotype is written Bb. Finally, the genotype of an organism with two recessive alleles is called homozygous recessive. In the eye color example, this genotype is written bb.

Of these three genotypes, only bb, the homozygous recessive genotype, will produce a phenotype of blue eyes. The heterozygous genotype and the homozygous dominant genotype both will produce brown eyes, though only the heterozygous genotype can pass on the gene for blue eyes.

The homozygous dominant, homozygous recessive, and heterozygous genotypes only account for some genes and some traits. Most traits actually are more complex, because many genes have more than two alleles, and many alleles interact in complex ways.

Inheritance patterns

Sickle-cell disease is an inherited condition that causes pain and damage to organs and muscles. Instead of having flattened, round red blood cells, people with the disease have stiff, sickle-shaped cells. The long, pointy blood cells get caught in capillaries, where they block blood flow. Muscle and organ cells don’t get enough oxygen and nutrients, and they begin to die.

The disease has a recessive pattern of inheritance: only individuals with two copies of the sickle-cell allele have the disease. People with just one copy are healthy.

In addition to causing disease, the sickle-cell allele makes people who carry it resistant to malaria, a serious illness carried by mosquitos. Malaria resistance has a dominant inheritance pattern: just one copy of the sickle cell allele is enough to protect against infection. This is the very same allele that, in a recessive inheritance pattern, causes sickle-cell disease!

Now let’s look again at the shape of the blood cells. People with two copies of the sickle-cell allele have many sickled red blood cells. People with two copies of the “normal” allele have disc-shaped red blood cells. People with one sickle-cell allele and one normal allele have a small number of sickled cells, and their cells sickle more easily under certain conditions. So we could say that red blood cell shape has a co-dominant inheritance pattern. That is, individuals with one copy of each allele have an in-between phenotype.

So is the sickle cell allele dominant, recessive, or co-dominant? It depends on how you look at it.

Protein function

If we look at the proteins the two alleles code for, the picture becomes a little more clear. The affected protein is hemoglobin, the oxygen-carrying molecule that fills red blood cells. The sickle-cell allele codes for a slightly modified version of the hemoglobin protein. The modified hemoglobin protein still carries oxygen, but under low-oxygen conditions the proteins stick together.

When a person has two sickle cell alleles, all of their hemoglobin is the sticky form, and the proteins form very long, stiff fibers that distort red blood cells. When someone has one sickle-cell allele and one normal allele, only some of the hemoglobin is sticky. Non-sticky hemoglobin is made from the normal allele, and sticky hemoglobin is made from the sickle-cell allele (every cell has a copy of both alleles). The sticking-together effect is diluted, and in most cells, the proteins don’t form fibers.

The protist that causes malaria grows and reproduces in red blood cells. Just exactly how the sickle-cell allele leads to malaria resistance is complex and not completely understood. However, it appears that the parasite reproduces more slowly in blood cells that have some modified hemoglobin. And infected cells, because they easily become misshapen, are more quickly removed from circulation and destroyed.

To see more examples of how variations in genes influence traits, visit The Outcome of Mutation.

When the genotype consists of a dominant and a recessive allele the phenotype will be like the recessive allele s?

When there is a genotype that consists of a dominant and a recessive allele, the phenotype generally looks like the dominant one.

When the genotype consists of a dominant and recessive?

An organism with one dominant allele and one recessive allele is said to have a heterozygous genotype. In our example, this genotype is written Bb. Finally, the genotype of an organism with two recessive alleles is called homozygous recessive.

When a dominant gene is paired with a recessive gene the characteristic associated with the dominant gene will be?

An individual with one dominant and one recessive allele for a gene will have the dominant phenotype. They are generally considered “carriers” of the recessive allele: the recessive allele is there, but the recessive phenotype is not.

Why human with heterozygous genotype will have the dominant phenotype?

Unlike homozygous, being heterozygous means you have two different alleles. You inherited a different version from each parent. In a heterozygous genotype, the dominant allele overrules the recessive one. Therefore, the dominant trait will be expressed.