What type of contrast media is most effective in reducing an intussusception?

  • Franken Jr EA, Sato Y, Smith WL. Pediatric use of contrast agents. In: Skucas J, ed. Radiographic Contrast Agents. Gaithersburg, Maryland: Aspen Publishers, 1989: 462–485.

    Google Scholar 

  • Smith WL, Franken EA. Pediatric contrast agents. In: Katzberg RW, ed. The Contrast Media Manual. Baltimore, Maryland: Williams and Wilkins, 1992: 207–221.

    Google Scholar 

  • Chuang S. Contrast agents in pediatric neuroimaging. AJNR. 1992; 13: 785–794.

    PubMed  CAS  Google Scholar 

  • Cohen MD. Choosing contrast media for the evaluation of the gastrointestinal tract of neonates and infants. Radiology. 1987; 162: 447–456.

    PubMed  CAS  Google Scholar 

  • Zerin JM. Contrast studies of the gastrointestinal tract in the neonate. Semin Pediatr Surg. 1992; 1: 284–295.

    PubMed  CAS  Google Scholar 

  • Ratcliffe JF. The use of low osmolality water soluble (LOWS) contrast media in the pediatric gastro-intestinal tract: a report of 115 examinations. Pediatr Radiol. 1986; 16: 47–52.

    CrossRef  PubMed  CAS  Google Scholar 

  • Moires TW, Katzberg RW. Intravascular contrast media: properties and general effects. In: Katzberg RW, ed. The Contrast Media Manual. Baltimore, Maryland: Williams and Wilkins, 1992: 1–18.

    Google Scholar 

  • Hitoshi Katayama MD, et al. Adverse reactions to ionic and non-ionic contrast media-a report from the Japanese committee on safety of contrast media. Radiology. 1990; 175:621–628.

    Google Scholar 

  • Di Sessa TG, Zednikova M, Hinaishi S, Jarnakani JM, Higgins CB, Friedman WF. The cardiovascular effects of metrizamide in infants. Radiology. 1983; 148: 687–691.

    CAS  Google Scholar 

  • Pelech AN, Allarel SM, Hard RT, Giddins NG, Collins GF. A comparison of iohexol and diatrizoate-meglumine in children undergoing cardiac catheterization. Invest Radiol. 1991; 26: 665–670.

    CrossRef  PubMed  CAS  Google Scholar 

  • Carro JJ, Trindade E, McGregor M. The risks of death and of severe nonfatal reactions with high-vs. low-osmolality contrast media: a meta-analysis. AJR. 1991; 156: 825–832.

    Google Scholar 

  • Lawrence V, Matthai W, Hartmaier S. Comparative safety of high-osmolality and low-osmolality radiographic contrast agents. Invest Radiol. 1992; 27: 2–28.

    CrossRef  PubMed  CAS  Google Scholar 

  • Levin DC, Gardiner GA, Karasick S, et al. Cost containment in the use of low osmolar contrast agents: effect of guidelines, monitoring and feedback mechanisms. Radiology. 1993; 189: 753–757.

    PubMed  CAS  Google Scholar 

  • Gooding CA, Berdon WE, Brodeur AE, Rowen M. Adverse reactions to intravenous pyelography in children. AJR. 1975; 123:802–804.

    CAS  Google Scholar 

  • Bush W, Swanson DP. Acute reactions to intravascular contrast media: types, risk factors, recognition and specific treatment. AJR. 1991; 157: 1153–1161.

    PubMed  CAS  Google Scholar 

  • Ansell G. Fatal overdose of contrast medium in infants. Br J Radiol. 1970; 43: 395–396.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kassner EG, Elquezabal A, Pochaczebsky R. Death during intravenous urography. Overdosage syndrome in young infants. New York State J Med. 1973; 73: 1958–1966.

    CAS  Google Scholar 

  • Junck L, Marshall W. Fatal brain edema after contrast-agent overdose. AJNR. 1986; 7: 522–525.

    PubMed  CAS  Google Scholar 

  • Berdon WE. Pulmonary edema in infants who receive contrast materials for urograms (letter). Radiology. 1981; 139: 508.

    Google Scholar 

  • Wood BP, Smith WL. Pulmonary edema in infants who receive contrast materials for urograms (letter). Radiology. 1981; 139:508.

    PubMed  CAS  Google Scholar 

  • Barrett BJ, Carlisle EJ. Meta-analysis of the relative nephrotoxicity of high-and low-osmolality iodinated contrast media. Radiology. 1993; 188: 171–178.

    PubMed  CAS  Google Scholar 

  • Kathali RE, Taylor GJ, Woods WT, et al. Nephrotoxicity of non-ionic low-osmolality vs. ionic high-osmolality contrast media: a prospective double-blind randomized comparison in human beings. Radiology. 1993; 186: 183–187.

    Google Scholar 

  • Dawson P. On the nephrotoxic potential of the iodinated intravascular contrast agents. Adv X-Ray Contrast. 1993; 1: 2–9.

    Google Scholar 

  • Berg KJ, Jakobsen JA. Nephrotoxicity related to X-ray contrast media. Adv X-Ray Contrast. 1993; 1: 10–18.

    Google Scholar 

  • Boo NY, Mahmud MN, Samad SA. Radiocontrast-induced nephropathy in a pair of xiphaomphalapagus conjoined twins during the neonatal period. Acta Pediatr Scand. 1991; 80: 735–737.

    CrossRef  CAS  Google Scholar 

  • Cohen MD. Intravenous urography in neonates and infants. What dose of contrast should be used? Br J Radiol. 1979: 52: 942–944.

    CrossRef  PubMed  CAS  Google Scholar 

  • Maly P, Back-Gansmo T, Elmqvist D. Risk of seizures after myelography: comparison of iohexol and metrizimade. AJNR. 1988; 9: 879–883.

    PubMed  CAS  Google Scholar 

  • Elam E, Dorr R, Lagel K, Pond G. Cutaneous ulceration due to contrast extravasation: experimental assessment of injury and potential antidotes. Invest Radiol. 1991; 26: 13–21.

    CrossRef  PubMed  CAS  Google Scholar 

  • McAlister WH, Kissane JM. Comparison of soft tissue effects of conventional ionic, low osmolar ionic and non-ionic iodine containing contrast material in experimental animals. Pediatr Radiol. 1990; 20: 170–174.

    CrossRef  PubMed  CAS  Google Scholar 

  • Luna-Fineman S, Healy MV, Parker BR. Corticosteroid pretreatment for potential contrast reactions in children with lymphoreticular cancer: a word of caution. AJR. 1990; 155: 357–358.

    PubMed  CAS  Google Scholar 

  • Grossman H, Merten D, Effman E, Plucinsky R. Isotonic water soluble contrast material for cysto-urethrogram. J Urol. 1982; 128: 1006–1008.

    PubMed  CAS  Google Scholar 

  • Foley MJ, Ghahremani GG, Rogers LF. Reappraisal of contrast media used to detect upper gastrointestinal perforations: comparison of ionic water-soluble media with barium sulfate. Radiology. 1982; 144: 231–237.

    PubMed  CAS  Google Scholar 

  • Gelfan DW, Ott DJ. Gastrointestinal contrast agents. In: Taveras JM, Ferrucci JT, eds. Radiology. Vol. 4. Philadelphia: Lippincott, 1986: 1–7.

    Google Scholar 

  • Margulis AR, Burhenne HJ, eds. Alimentary tract roentgenol-ogy. 3rd ed. St. Louis: Mosby, 1983: 87–108.

    Google Scholar 

  • Eklof O, Wald J, Thomasson B. Barium peritonitis: Experience of five pediatric cases. Pediatr Radiol. 1983; 13: 5–9.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dodds WJ, Stewart ET, Vlyment WJ. Appropriate contrast media for evaluation of oesophageal disruption. Radiology. 1982; 144: 439–441.

    PubMed  CAS  Google Scholar 

  • Ginai AZ, Kate FJW, Berg RGM, Hoornstra K. Experimental evaluation of various available contrast agents for use in the upper GI tract in case of suspected leakage; Effects on mediastinum. Br J Radiol. 1985; 58: 585–592.

    CrossRef  PubMed  CAS  Google Scholar 

  • McAlister WM, Siegel MJ. Fatal aspiration in infancy during gastrointestinal series. Pediatr Radiol. 1984; 14: 81–83.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kirks DR. Practical pediatric imaging: diagnostic radiology of infants and children. Boston: Little, Brown, 1984: 536, 650-652, 665-666.

    Google Scholar 

  • Kuhns LR, Kanellitsas C. Use of isotonic water-soluble contrast agents for gastrointestinal examinations in infants. Radiology. 1982; 144:411.

    PubMed  CAS  Google Scholar 

  • Coussement A. Non-ionic and dimeric contrast agents (letter to editor). Radiology. 1983; 148: 318–319.

    PubMed  CAS  Google Scholar 

  • Ratcliffe JF. The use of ioxaglate in the paediatric gatrointestinal tract: a report of 25 cases. Clin Radiol. 1983; 34: 579–583.

    CrossRef  PubMed  CAS  Google Scholar 

  • Clarke E, Siefle RL. Effect of oral metrizamide on hematocrit and serum osmolality in the neonate. Invest Radiol. 1984; 19: 599–600.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ginai AZ. Experimental evaluation of various available contrast agents for use in the gastrointestinal tract in case of suspected leakage: Effects on peritoneum. Br J Radiol. 1985; 58: 969–978.

    CrossRef  PubMed  CAS  Google Scholar 

  • Schwartzenruber DJ, Bicumire DF, Cohen M, Block Gunter M, Grosfeld JL. Use of iohexol in the radiographic diagnosis of ischemic bowel. J Pediatr Surg. 1986; 21: 525–529.

    CrossRef  Google Scholar 

  • Leonidas JC, Burry VF, Fellows RA, Beatty EC. Possible adverse effect of methylglucamine diatrizoate compounds on the bowel of newborn infants with meconium ileus. Radiology. 1976; 121: 696–698.

    Google Scholar 

  • Grantmyre EB, Butler GJ, Gillis DA. Necrotizing enterocolitis after Renografin-76 treatment of meconium ileus. AJR. 1981; 136:990–991.

    PubMed  CAS  Google Scholar 

  • Dawson P, Grainger RG, Pitfield J. The new low-osmolar contrast media: a simple guide. Clin Radiol. 1982; 34: 221–226.

    CrossRef  Google Scholar 

  • Ginai AZ, Kate FJW, Berg RGM, Hoornstra K. Experimental evaluation of various available contrast agents for use in the upper gastrointestinal tract in case of suspected leakage: Effects on lungs. Br J Radiol. 1984; 57: 895–901.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cohen MD, Weber TR, Grosfeld JL. Bowel perforation in the newborn: diagnosis with metrizamide. Radiology. 1984; 150: 65–69.

    PubMed  CAS  Google Scholar 

  • Noblet HR. Treatment of uncomplicated meconium ileus by Gastrografin enema: A preliminary report. J Pediatr Surg. 1969; 4: 190–197.

    CrossRef  Google Scholar 

  • Donnison AB, Shwachman H, Gross RE. A review of 164 children with meconium ileus seen at the Children’s Hospital Medical Center, Boston. Pediatrics. 1966; 37: 833–850.

    PubMed  CAS  Google Scholar 

  • Lutzger LG, Factor SM. Effects of some water-soluble contrast media on the colonic mucosa. Radiology. 1976; 118: 545–548.

    PubMed  CAS  Google Scholar 

  • Campbell JB. Contrast media in intussusception. Pediatr Radiol. 1989; 19: 293–296.

    CrossRef  PubMed  CAS  Google Scholar 

  • Meyer JS. The current radiology management of intussusception: A survey and review. Pediatr Radiol. 1992; 22: 323–325.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sweh YH, Ting WH, Yeh HH. Reduction of intestinal intussusception in infancy by colonic air insufflation. Chin MgoJ. 1964; 83: 666–673.

    Google Scholar 

  • Eklof OA, Johanson L, Lohr G. Intussusception: Hydrostatic reduction and incidence of leading points in differentiate. Pediatr Radiol. 1980; 10: 83–86.

    CrossRef  PubMed  CAS  Google Scholar 

  • Palder SB, Ein SH, Stringer DA, Alton D. Intussusception: Barium or air? J Pediatr Surg}. 1991; 26: 271–275.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gu L, Alton DJ, Daneman A, et al. Intussusception reduced in children by rectal insufflation of air. AJR. 1988; 150: 1345–1348.

    PubMed  CAS  Google Scholar 

  • Leonidas JC. Treatment of intussusception with small bowel obstruction: Application of decision analysis. AJR. 1985; 145: 665–669.

    PubMed  CAS  Google Scholar 

  • Ein SH, Stephens CA. Intussusception: 354 cases in 10 years. Pediatr Surg. 1971; 6: 16–27.

    CrossRef  CAS  Google Scholar 

  • Auldist AW. Intussusception in a children’s hospital: a review of 230 cases in seven years. Aust NZ J Surg. 1970; 40: 136–148.

    CrossRef  CAS  Google Scholar 

  • Franken EA, Smith WL, Chernish SM, Fletcher BD, Goldman H. The use of glucagon in hydrostatic reduction of intussuception-a double blind study of 30 patients. Radiology. 1983; 107: 590–601.

    Google Scholar 

  • Humphrey A, Ein SH, Mok PM. Perforation of the intussuscepted colon. AJR. 1981; 137: 1135–1138.

    Google Scholar 

  • Ein SH, Mercer S, Humphrey A, Macdonald P. Colon perforation during attempted barium enema reduction of intussusception. Pediatr Surg. 1981; 16: 313–315.

    CrossRef  CAS  Google Scholar 

  • Bjamason G, Peterson G. The treatment of intussusception: thirty years experience of Gothenburg’s Children’s Hospital. Pediatr Surg. 1968; 3: 19–23.

    CrossRef  Google Scholar 

  • Frye TR, Howard WHR. The handling of ileocolic intussusception in a pediatric medical center. Radiology. 1970; 97: 187–191.

    PubMed  CAS  Google Scholar 

  • Williams HJ. Intussusception facts, fallacies and practicals. Minn Med. 1975; 58: 140–147.

    PubMed  CAS  Google Scholar 

  • Chuang S, Hochhauser L, Harwood-Nash D, Armstrong D, Burrows P, Savoie J. The tethered cord syndrome. Paper presented at XIII Symposium Neuroradiologicalum, Stockholm, Sweden, 1986.

    Google Scholar 

  • Chuang S, Fitz CR, Harwood-Nash D. The use of metrizamide ventriculography in pediatric hydrocephalus. Paper presented at the Society for Pediatric Radiology, San Francisco, CA, USA. 1981.

    Google Scholar 

  • Harwood-Nash DC, Fitz CR. Myelography: neuroradiology in infants and children. Vol 3. St. Louis: Mosby, 1976: 1125–1166.

    Google Scholar 

  • Bannon KR, Braun IF, Pinto R. Comparison of radiographic quality and adverse reactions in myelography: iopamidol and metrizamide. AJNR. 1983; 4: 312–313.

    PubMed  CAS  Google Scholar 

  • Moschini L, Manara O, Bonaldi G. Iopamidol and metrizamide in cervical myelography, side-effects, EEG, and CSF changes. AJNR. 1983; 4: 848–850.

    PubMed  CAS  Google Scholar 

  • Trevisan C, Malaguti C, Manfredini M. Iopamidol vs. metrizamide myelography: clinical comparison of side-effects. AJNR. 1983; 4: 306–308.

    PubMed  CAS  Google Scholar 

  • Witwer G, Cacayorin ED, Bernstein AD. Iopamidol and metrizamide for myelography: prospective double-blind clinical trial. AJR. 1984; 143: 869–873.

    PubMed  CAS  Google Scholar 

  • Davies AM, Evans N, Chandy J. Outpatient lumbar radiculography; comparison of iopamidol and iohexol and a literature review. Br J Radiol. 1989; 62: 716–723.

    CrossRef  PubMed  CAS  Google Scholar 

  • Meyer JS, Daneman BC, Buonamo C, Bemin JA. Air and liquid contrast agents in the management of intussusception: A controlled randomized trial. Radiology. 1993; 188: 507–511.

    PubMed  CAS  Google Scholar 

  • Miller DL, Chang R, Wells WT, et al. Intravascular contrast media: effect of dose on renal function. Radiology. 1988; 167: 607–611.

    PubMed  CAS  Google Scholar 

  • Lipman JC, Wang A, Brooks ML, et al. Seizure after intrathecal administration of iopamidol. AJNR. 1988; 9: 787–788.

    PubMed  CAS  Google Scholar 

  • Smith W, Franken EA. Metrizamide as a contrast agent for visualization of the tracheobronchial tree: Its drawbacks and possible advantages. Pediatr Radiol. 1984; 14: 158–160.

    CrossRef  PubMed  CAS  Google Scholar 

  • Wells WD, Burbmage MD. Direct effects of contrast media on rat lungs. Can Assoc Radiol J. 1991; 42.

    Google Scholar 

  • What type of contrast media is most effective in reducing an Intussusceptions?

    Air enemas were found to be accurate in demonstration of intussusception and at least as effective as liquid contrast medium for reduction of intussusception. In experienced hands, the shorter fluoroscopic time with resultant lower radiation exposure associated with air is an important benefit.

    What is the most commonly used contrast media?

    Barium-sulfate is the most common contrast material taken by mouth, or orally. It is also used rectally and is available in several forms, including: powder, which is mixed with water before administration.

    What are the 4 types of contrast media?

    There are a number of different forms of imaging contrast (gas, liquid, suspension) allowing for delivery by mouth, per rectum, intra-luminal, or intravenous/intra-arterial routes.

    What are the 3 types of vascular contrast media?

    All contrast agents are not equal Newer contrast media include low-osmolar ionic, iso-osmolar and gadolinium-based media. The last type is used in magnetic resonance imaging.